An ADI extrapolated Crank-Nicolson orthogonal spline collocation method for nonlinear reaction–diffusion systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation

A new method is formulated and analyzed for the approximate solution of a twodimensional time-fractional diffusion-wave equation. In this method, orthogonal spline collocation is used for the spatial discretization and, for the time-stepping, a novel alternating direction implicit (ADI) method based on the Crank-Nicolson method combined with the L1-approximation of the time Caputo derivative of...

متن کامل

An ETD Crank-Nicolson Method for Reaction-Diffusion Systems

A novel Exponential Time Differencing (ETD) Crank-Nicolson method is developed which is stable, second order convergent, and highly efficient. We prove stability and convergence for semilinear parabolic problems with smooth data. In the nonsmooth data case we employ a positivity-preserving initial damping scheme to recover the full rate of convergence. Numerical experiments are presented for a ...

متن کامل

L2-Error Estimates of the Extrapolated Crank-Nicolson Discontinuous Galerkin Approximations for Nonlinear Sobolev Equations

We analyze discontinuous Galerkin methods with penalty terms, namely, symmetric interior penalty Galerkin methods, to solve nonlinear Sobolev equations. We construct finite element spaces on which we develop fully discrete approximations using extrapolated Crank-Nicolson method. We adopt an appropriate elliptic-type projection, which leads to optimal ∞ L2 error estimates of discontinuous Galerk...

متن کامل

Exponential time differencing Crank-Nicolson method with a quartic spline approximation for nonlinear Schrödinger equations

This paper studies a central difference and quartic spline approximation based exponential time differencing Crank-Nicolson (ETD-CN) method for solving systems of one-dimensional nonlinear Schrödinger equations and twodimensional nonlinear Schrödinger equations. A local extrapolation is employed to achieve a fourth order accuracy in time. The numerical method is proven to be highly efficient an...

متن کامل

A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation

In this paper, a new alternating direction implicit Galerkin–Legendre spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation is developed. The temporal component is discretized by the Crank–Nicolson method. The detailed implementation of the method is presented. The stability and convergence analysis is strictly proven, which shows that the derived ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2012

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2012.04.001